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Abstract

The temporal evolution of the snowpack is controlled by the surface temperature, which plays

a key role in physical processes such as snowmelt. It shows large spatial variations in mountainous

areas, where the illumination conditions are variable and depend on the topography. The surface

energy budget is affected by the particular processes that occur in these areas, such as themodulation

of the illumination by local slope and the re-illumination of the surface from surrounding slopes.

These topography effects are often neglected in models, considering the surface as flat and smooth.

Here we aim at estimating the snow surface temperature and its spatial variations in an alpine

rugged terrain, in order to evaluate the role of the different processes that govern the variations of

surface temperature. For this, a modelling chain is implemented to derive surface temperature from

in-situ measurements. The main component is the rough surface ray-tracing (RSRT) model, based

on a photon transport algorithm to quantify the impact of surface roughness in snow-covered areas.

During this work, the surface scheme has been improved by considering the turbulent heat fluxes

and the altitudinal variations of air temperature. To assess the performance of the model, we use

in-situ measurements and satellite thermal observations (TIRS sensor aboard Landsat-8) in the Col

du Lautaret area, in the French Alps. The satellite images are corrected from atmospheric effects

with a single-channel algorithm. The results of the simulations show (i) an agreement between the

simulated and observed surface temperature for a 30 h long time series in winter; (ii) the model

bias (-0.23 °C and RMSE: 1.21 °C) at the in-situ measurement station is much less than the satellite

observations bias (-1.98 °C and RMSE: 2.48 °C ) ; (iii) the spatial variations of surface temperature

are on the order of 5 to 10 °C between opposed slope orientations. The agreement with satellite

observations is improved when considering topography effects, from R2 = 0.57 to R2 = 0.75 for

a particular date on February 2018. A total of 20 Landsat-8 acquisitions have been considered,

covering a wide variety of illumination conditions. Considering the importance of these processes in

the surface energy budget, accounting for topography is therefore necessary to estimate the spatial

variations of snow surface temperature.



Résumé

L’évolution temporelle du manteau neigeux est contrôlée par la température de surface. Elle

montre une grande variabilité spatiale dans les zones de montagne, où les conditions d’illumination

sont variables du fait de la topographie. Le bilan d’énergie de la surface est en effet affecté par

les changements d’éclairement à cause de la pente locale et de l’orientation de la surface par rap-

port au soleil. Les modèles existants permettant de calculer la température de surface considèrent

souvent la surface de neige comme lisse et horizontale. L’objective de cette étude est d’estimer la

variabilité spatiale de la température de surface de la neige en terrain complexe, afin d’évaluer le

rôle des differents processus qui influencent ces variations. Pour cela, une chaîne de modélisation a

été implémentée avec en son coeur un modèle numérique de transport de photons (RSRT) récem-

ment developpé. Pendant ce travail, le schéma de surface a été amélioré pour prendre en compte

les flux de chaleur turbulents et le gradient altitudinal de la température de l’air. Pour évaluer la

performance du modèle au Col du Lautaret, dans les Alpes, nous utilisons des mesures in situ et des

observations satellitaires, issues du capteur TIRS sur Landsat-8. Les images satellite ont été corri-

gées pour prendre en compte l’atmosphère avec un algorithme du type single-channel afin d’estimer

la température de surface. Les résultats des simulations montrent (i) un bon accord de l’estimation

de la température de surface avec une série temporelle de mesures in-situ ; (ii) un faible biais entre

les simulations et les données in-situ, et un biais modéré avec les observations satellite (-0.23 °C et

-1.98 °C, respectivement) ; (iii) la variabilité spatiale de température de surface est de l’ordre de 5 à

10 °C entre des pentes opposées Nord et Sud. L’accord avec les observations est meilleur quand les

effets liés à la topographie sont pris en compte, en particulier le rééclairement de la surface par des

pentes voisines et la prise en compte du gradient altitudinal, le coefficient R2 augmentant de 0.57

jusqu’à 0.75 pour une simulation en février 2018. 20 images Landsat-8 ont été considérées afin de

couvrir une grande variété de conditions d’illumination. Prendre en compte la topographie apparait

essentiel pour estimer avec précision la température de surface de la neige et sa variabilité spatiale.
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1 Introduction

The cryosphere is an integral part of the Earth’s climate system. Among its different frozen compo-

nents, it includes snow-covered areas, that reflect more solar radiation than any other natural surfaces

(Dozier et al., 2009). Snow is common both in polar and mountainous regions, and as it covers about a

third of the Northern Hemisphere terrestrial surface during winter, it plays a significant role on Earth’s

surface energy budget (Imbrie and Imbrie, 1980; Flanner and Zender, 2005). Understanding the re-

flection and absorption of solar energy by snow is therefore important at many different spatial scales,

as this controls the evolution of the snowpack, but also affects the hydrological cycle and avalanche

risk forecasting (Flanner et al. 2007; Vionnet et al. 2012). Snow drives substantial changes to all

energy fluxes that take place at the interface between the surface and the atmosphere. The surface

energy budget is divided in two principal terms: the heat fluxes resulting from the turbulence in the

boundary layer above the surface (sensible and latent heat fluxes), and the radiative fluxes (Male and

Granger, 1981). The latter is split into the shortwave radiation (from 0.3µm to 5µm) and the long-

wave radiation (from 5µm to 100µm), and comprise the upwelling and downwelling contributions to

the surface, upwelling meaning from the surface to the atmosphere, and downwelling meaning from

the atmosphere to the surface. Both shortwave and longwave upwelling fluxes of the radiative balance

depend on the nature of the surface: the longwave flux is driven by snow surface temperature (here-

after Ts), and shortwave flux is governed by the snow albedo, defined as the proportion of incoming

shortwave radiation reflected by the surface. As it controls the quantity of solar energy absorbed by

the snowpack, understanding the snow albedo variations is therefore essential.

Considering rugged terrain, the shortwave radiation received at the surface presents spatial vari-

ations. Small rough features (i.e. sastrugi) can potentially trap photons in their cavities, decreasing

albedo and enhancing the absorption locally (Warren et al., 1998; L’Hermitte et al., 2014). Being θs

the solar zenith angle (angle between the zenith and the incident solar angle), topography introduces a

different local solar zenith angle, θ′s, that depends on the surface’s tilt. Shadowed areas do not receive

direct radiation, but in turn they receive radiation reflected from surrounding slopes. The influence of

the surface’s tilt on the absorbed radiation is the main difference with respect to flat, smooth terrain.

The local variations of snow albedo and absorption by the snowpack lead to differences on the radiative

balance and therefore have an impact on snow surface temperature. Some efforts have been made to

evaluate the longwave radiation in snow-covered areas (Marks and Dozier, 1979; Plüss and Ohmura,

1997). Lee et al. (2013) showed that the inclusion of topography effects have an impact on surface ra-

diation budget over the Tibetan Plateau. While some physical and chemical properties of the snowpack,

such as the Specific Surface Area (SSA – Grenfell and Warren, 1999) or the presence of light-absorbing

impurities (Skiles et al., 2018), are considered in detailled snowpack evolution models (Carmagnola et
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al., 2013; Tuzet et al., 2017), snow is usually represented as flat and smooth.

In addition to traditional in-situ measurements, surface temperature products from thermal satellite

observations represent a good choice when evaluating the spatial variability of snow surface temper-

ature. Remote sensing techniques have been widely used to monitor snow-covered surfaces on Earth.

Optical satellite observations are mainly employed to derive information about the snow physical prop-

erties, as they are based on surface reflectance products (Mondet and Fily, 1999; Campagnolo et al.,

2016). The observation in the thermal infrared (TIR) domain around (10.5µm to 12.5µm) wave-

lengths allows the retrieval of surface temperature. Even though several TIR bands are available from

some missions, as the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER)

onboard Terra satellite, or the Visible Infrared Imaging Radiometer Suite (VIIRS) onboard the Suomi

National Polar-Orbiting Partnershipp (Suomi NPP) spacecraft, only Landsat missions have an archive

of nearly 40 years of thermal imagery. The relatively high spatial resolution of their products (30m)

is adequate when considering spatial variations of surface temperature at the topography scale. From

Landsat 4-5’s Thematic Mapper to the most recent Thermal Infrared Sensor (TIRS) aboard Landsat-8,

an enormous amount of thermal images are available to work with. Land Surface Temperature (LST)

products have beenmainly used for urban climate studies, drought monitoring and surface soil moisture

estimation, among other fields (Li et al., 2013; Leng et al., 2016). However, remote sensing observa-

tions still find difficulties in mountainous areas. Both optical and thermal sensors suffer from changes

on the surface illumination, i.e. different slopes and aspects (Sandmeier and Itten, 1997; He et al.,

2019). This has motivated recent works in mountainous areas (Lamare et al., 2020) in the optical part

of the spectrum, and there is a particular interest of the remote sensing community on the upcoming

Landsat Level-2 Surface Temperature Science Product, courtesy of the United States Geological Survey

(USGS – Web 1, last access: 19 June 2020).

This Master thesis aims at estimating the snow surface temperature in mountainous areas with

a modelling chain that uses in-situ measurements. Thermal infrared observations are used in order

to evaluate the spatial variations and the role of the different processes that take place in complex

terrain. A 3D radiative transfer model developed at IGE (Institut des Géosciences de l’Environnement

– Grenoble) by Ghislain Picard and Fanny Larue uses a Monte Carlo photon transport algorithm to

quantify the impact of surface roughness in snow-covered areas. In the Rough Surface Ray Tracer

(RSRT) model (Larue et al., 2020), a set of photons is sent to a surface described by a triangular mesh,

i.e. a connected set of triangular facets, that can easily be derived from aDigital ElevationModel (DEM).

The path of each individual photon is calculated, giving as a result the number of times a photon has

hit each facet. A surface scheme uses subsequently this information to compute the shortwave and

longwave radiation, and the surface temperature of each facet. This study is applied at the Col du
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Lautaret area, in the French Alps. Section 2 provides a review of the basis of radiative transfer, the

model description, as well as the method for retrieving LST from satellite images. Results are shown

in Section 3, and discussed in Section 4. Final remarks and conclusion are addressed in Section 5.

2 Methods and materials

2.1 Surface energy budget

The surface temperature is determined by the surface energy budget. This budget comprises four

different types of energy fluxes at a surface (Pal Arya, 1988): (i) the upwelling and downwelling

radiation fluxes, whose algebraic sum is noted Rnet; (ii) the sensible heat flux, noted H, that comes

from the difference in temperature between the air and the surface; (iii) the latent heat flux, noted L,

as a result of changes of state (evaporation, evapotranspiration or condensation) at the surface; and

(iv) the ground heat flux, noted G, which is exchanged through the medium itself. The equation of the

surface energy budget is therefore:

Rnet +H + L+G = 0 (1)

where all fluxes are expressed in W m−2. Rnet is split into the contributions of the shortwave radiation

(from 0.3µm to 5µm) and the longwave radiation (from 5µm to 100µm), noted SWnet and LWnet,

respectively. Each term corresponds to the balance between the downwelling radiation fluxes (SWd

and LWd – from the Sun and atmosphere to the surface) and the upwelling radiation fluxes (SWu

and LWu – from the surface to the atmosphere). The shortwave radiation fluxes are related via the

broadband albedo, the proportion of incoming radiation reflected by the surface, noted α.Here, we

consider snow as a blackbody in the longwave spectral range (emissivity = absorptivity = 1) , so the

upward longwave radiation flux is determined by the Stefan-Boltzmann law:

LWu = σT 4
s (2)

being σ = 5.67·10−8Wm−2 K−4 the Stefan-Boltzmann constant, and Ts the snow surface temperature.

The ground heat flux, G, is here neglected as the snowpack is considered thermalized, meaning that

no energy is transferred downwards. Both the sensible and the latent heat fluxes are here considered

following the simple approach used in the minimal snow model (MSM – Essery and Etchevers, 2004),

and adapted by Picard et al. (2009) in their snow dynamic and emission model (SDEM):

H = ρair cp,air CH U (Ts − Tair) (3)

L = Ls ρair CH U · (Qsat(Ts, Ps)−Qair) (4)
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where ρair and cp,air are the density and heat capacity of the air, U is the wind speed, Tair is the air

temperature, Qsat(Ts, Ps) is the specific humidity at snow surface temperature Ts and pressure Ps, and

CH is a surface exchange coefficient. This coefficient depends on atmospheric stability. A detailed

definition can be found on Picard et al. (2009). Here, for the sake of simplicity, a neutral situation is

considered, so CH stands for:

CH = 0.16

[
ln(

zt
z0

) ln(
zw
z0

)

]−1
(5)

Symbol Description Value

Ps Air pressure Altitude dependent

ρair Air density Ps· (287 Tair)−1

cp,air Heat capacity of air 1005 J kg−1 K−1

Ls Sublimation heat 2.838·106 J·kg−1

zt Temperature measurement height 3.53 m - snowdepth [m]

zw Wind speed measurement height 5.18 m - snowdepth [m]

z0 Roughness length 10−3 m

Table 1 – Definitions and values of the symbols and magnitudes that are involved on the simplified
calculation of turbulent fluxes.

Definitions of all symbols and their values can be found in Table 1. Some of them are based on in-situ

measurements (Section 2.3). The equation of the surface energy budget for each facet of a modelled

surface therefore remains:

SWnet, facet + LWd, facet − σT 4
s +Hfacet + Lfacet = 0 (6)

The incoming shortwave radiation flux has spectral dependence (as well as the albedo), so the notion

of spectral irradiance is introduced hereafter. The spectral dependence of the downwelling longwave

radiation flux is here neglected. The modelling chain implemented to estimate Ts is shown below.

2.2 Modelling chain

Figure 1 shows the general flowchart of the modelling chain to estimate snow surface temperature, Ts.

TOM notation corresponds to "top-of-mountain", meaning on top of the studied location, and facet

notation corresponds to the surface. Several models (green boxes) are needed to simulate the different

terms of the energy budget (orange boxes). All models, steps and the required inputs are described in

the following sections.
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Figure 1 – Flowchart of the modelling chain to estimate snow surface temperature. The models
involved are in green, and the terms of the surface energy budget are in orange. The red dashed lines
indicate the last steps of the chain.

2.2.1 SBDART model

The direct solar spectral irradiance and the diffuse irradiance coming from the sky (noted: SWd, TOM,

and split into Irrdir (λ) and Irrdiff (λ), respectively) are simulated with the Santa Barbara DISORT At-

mospheric Radiative Transfer model (SBDART – Ricchiazzi et al., 1998), an atmospheric model that

computes radiative transfer in both clear and cloudy conditions. It considers several atmospheric trans-

mission models and the Mie theory to take scattering results into account. The simulations are run

every 3 nm from 300 to 2000nm, with the appropriate atmospheric and illumination conditions (atmo-

spheric profile depending on location, no aerosol layer, solar zenith and azimuth angles corresponding

to a particular date and time, etc).

2.2.2 Asymptotic Radiative Transfer theory

The intrinsic spectral albedo is computed using the Asymptotic Radiative Transfer (ART) theory. It al-

lows estimating spectral albedo for highly reflective materials, such as snow (Kokhanovsky and Zege,

2004). Based on several assumptions about the snowpack (semi-infinite, vertical and horizontal homo-

geneous layers) and the surface (flat and smooth), both direct and diffuse components of the albedo
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are expressed as follows:

αdir(λ, θs) = exp

(
−3

7
(1 + 2 cos θs)

√
aλ

)
(7)

αdiff(λ) = exp (−
√
aλ) (8)

where aλ a factor that depends on snow microstructure (SSA), the ice absorption coefficient and impu-

rity content. SSA measurements are needed as input, and are taken from Tuzet et al. (2020) (Section

2.3). A Python library named Snowoptics has been developed to perform the calculations of snow

albedo on flat and tilted terrains using the ART theory (Picard, 2020).

2.2.3 Rough Surface Ray Tracer model

The RSRT model computes the propagation path of a large number of photons launched towards a

rough surface, until they escape from the scene. At the end of its path, each photon has hit the surface

one or several times. The number of hits (and its order) is the key information to simulate the absorbed

shortwave radiation by the snowpack.

The surface is represented by a mesh composed by triangular facets, given as an input. Here, the

mesh used for simulations was built from the RGE ALTI®Version 2.0 Digital Elevation Model (DEM)

provided by IGN France (Web 2, data available under conditions, last access: 19 June 2020). Data was

acquired using radar techniques in mountainous areas as the Alps (i.e. the study area – Section 2.3) in

2009. The coordinate reference system is Lambert 93 (EPSG: 2154), and the original spatial resolution

was of 5m. It was resampled to 10m due to computational limitations: the number of triangular facets

was too high to perform simulations on a personal computer. Each photon has an initial intensity and

a propagation direction~i, specified by the solar zenith and azimuth angles, also given as inputs. Edge

effects are avoided by excluding the outermost 15% of the mesh from illumination.

An extended description of the algorithm is provided by Larue et al. (2020), here we recall the main

steps: (1) estimation of the intersection between the photon path and the mesh (hereafter, a "hit"); (2)

update the intensity: decrease by a factor (1 - albedo); (3) determination of the outgoing direction,

and (4) update of the direction ~i. The algorithm iterates until the photon escapes from the scene or

its intensity is lower than a defined threshold (0.01, relative to the initial intensity that is equal to 1 –

unitless quantities of energy). The facets here are considered as Lambertian – light is reflected equally

in all directions, so the outgoing direction is randomly picked with a cosine-weighted hemispherical

distribution.

The model counts the number of hits per facet, according to when, in its propagation path, a photon
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has hit the facet (1st hit, 2nd hit, etc.). Noted nhit, i, this number corresponds to the proportion of the

total number of photons that hit the facet on their ith hit. Two consecutive simulations are run, in

both direct and diffuse illumination conditions. The results of the model (nhit,dir,i and nhit,diff,i, respec-

tively) are then incorporated to the modelling chain to estimate the net shortwave radiation per facet,

SWnet, facet.

2.2.4 Snow surface temperature estimation

The estimation of snow surface temperature is done by solving the surface energy budget equation

(Eq. 6). This is first carried out by assuming the surface is flat for the longwave radiation. Actually,

in complex terrain, facets eventually see the re-illumination from surrounding facets. This is consid-

ered in the modelling chain by updating the downwelling longwave radiation flux (red dashed lines in

Figure 1), and re-calculating Ts. Here we describe the steps followed to derive Ts in mountainous areas.

First, to simulate the absorbed shortwave radiation per facet, SWnet, facet, a spectral absorption co-

efficient is computed for both illumination conditions. It accounts for multiple reflection using the

number of hits per facet, issued from the RSRT model:

absdir(λ, θs) = (1− αdir(λ, θs))

i=nmax∑
i=0

αidir(λ, θs) nhit, dir, i (9)

absdiff(λ) = (1− αdiff(λ))

i=nmax∑
i=0

αidiff(λ) nhit, diff, i (10)

The net broadband shortwave radiation is then calculated accounting for the incoming spectral irradi-

ance (direct and diffuse), derived from SBDART model:

SWnet,dir(θs) =

∫ 2µm

0.3µm
absdir(λ, θs) Irrdir(λ) dλ (11)

SWnet,diff =

∫ 2µm

0.3µm
absdiff(λ) Irrdiff(λ) dλ (12)

SWnet(θs) = SWnet,dir(θs) + SWnet,diff (13)

Second, the downwelling longwave radiation flux, LWd, facet is obtained from in-situ measurements

(FluxAlp – Section 2.3) and is considered constant over the whole scene. The turbulent fluxes (Hfacet

and Lfacet) are also simulated from in-situ measurements with the simple approach proposed by Picard

et al. (2009) (Eqs. 3 and 4). Here, to account for the differences in altitude between the facets in the
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mesh, a lapse rate effect for the air temperature is introduced:

Tair,facet = Tair, obs + Γ (zfacet − zobs) (14)

where Γ = - 6 °C km−1 is a constant lapse rate value across the scene. Only air temperature is consid-

ered to depend on altitude, while wind speed and relative humidity are considered constant.

The surface energy budget equation for each facet is then to be solved for Ts. It is a nonlinear equa-

tion, with the upwelling longwave radiation flux , LWu, facet dependent on T4
s , the sensible heat flux term

dependent on Ts and the latent heat flux dependent Ts in a complex way through the humidity. This

last term is linearized to present the surface energy budget equation as a simplified quartic equation

for Ts:

a T 4
s + d Ts + e = 0 (15)

To account for the fact that each facet in rugged terrain "sees" the sky as a majority, but is also re-

illuminated from the surrounding facets, the sky-view factor is introduced, noted V . The surrounding

facets emit longwave radiation for its own Ts, as stated by the Stefan-Boltzmann law (Eq. 2). It is

represented in the modelling chain as the proportion of photons hitting a facet on at the first bounce

in diffuse illumination (so i = 1). Here an important approximation is done, by considering the re-

illumination constant for all of the facets. It means that they all emit the same average longwave

radiation based on the Ts of each facet, LWu, mean. The LWd, facet term is updated as follows:

LWd, facet, updated = V LWd, TOM + (1− V ) LWu,mean (16)

Ts is estimated for each facet of the simulated surface by solving the quartic equation again, con-

sidering the updated longwave term. This last part of the chain is represented in Figure 1 by the red

dashed lines.

2.3 Study area

Figure 2 shows the extent of the study area. It is located around the Col du Lautaret, a mountain pass

located at 2057 m a.s.l. in the French Alps (45.0°N, 6.4°E). This area is interesting for surface tem-

perature, as it covers both north and south-facing slopes, in addition to smaller-scale rugged terrain

covering the rest of orientations. The size of the area has been defined considering the computational

limitations of a personal computer, while covering a large diversity of rough features. The study area is

also well-instrumented, with the measurement station FluxAlp located within a few hundred meters,

on the Pré des Charmasses site. This site collects meteorological and radiometric observations since
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Figure 2 – Location of the study area, around the Col du Lautaret alpine site. The blue rectangle on
the left side represents the hillshade product on the right side. This product is generated from the RGE
ALTI®Version 2.0 Digital Elevation Model (DEM) provided by IGN France, with a spatial resolution of
10m.

October 2012 (Choler et al., 2014), and several snow measurement campaigns have taken place at this

site in the past (Dumont et al., 2017; Larue et al., 2020). Radiation fluxes are measured with a Kipp &

Zonen CNR4 net radiometer, and averaged as the other variables over 30 minutes. When deriving sur-

face temperature from radiometric observations, an uncertainty of 1 K is estimated. The data needed

as input for the modelling chain is issued from here (meteorological – air temperature, wind speed,

relative humidity and radiometric – downwelling longwave radiation flux). SSA measurements for two

consecutive winter seasons (2016 / 2017 and 2017 / 2018) have been provided by Tuzet et al. (2020).

The measurements were collected with the DUFISSS instrument (DUal Frequency Integrating Sphere

for Snow SSA measurement, Gallet et al., 2009) during the first season, and with the Alpine Snowpack

Specific Surface Area Profiler (ASSSAP, a lighter version of POSSSUM instrument, described in Arnaud

et al., 2011) during the second season. These measurements have an estimated uncertainty of 10 %.

In order to evaluate the model, FluxAlp data is insufficient as it is only based in a single point. A

spatially-distributed surface temperature dataset is described in the following sections.

2.4 Surface temperature retrieval with Landsat-8 observations

Spatial variations of surface temperature are retrieved from satellite observations. The two thermal

bands (TIRS – Band 10 and Band 11) aboard Landsat-8 cover the spectrum between 10.6µm to

12.51µm, with a spatial resolution of 100m (resampled by Cubic Convolution methods to 30m) and a

16 day repeat cycle. Only Level-2 data from the optical sensor is publicly available outside the United

States, meaning that thermal observations are only provided as Top-Of-Atmosphere radiances. Differ-

ent methods to correct atmospheric effects have been implemented to retrieve Land Surface Temper-

ature (LST, hereafter). These methods are based on split-window methods (Jin et al., 2015), mono-
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window techniques (Tardy et al., 2016), or a single-channel approach (Jiménez-Muñoz and Sobrino,

2003). An excellent review is provided by Li et al. (2013). Soon after the launch of Landsat-8, stray

light was observed on thermal data (Montanaro et al., 2014), coming from scattering of outer radi-

ance. A nonuniform signal is observed, affecting mainly the Band 11. USGS still recommends not to use

Band 11 for the split-window technique. Only recently (Web 3, last access: 19 June 2020), calibration

parameters have been adjusted and data of the upcoming Collection 2 (during 2020) will benefit from

this correction. Methods based on only one band are therefore suggested, considering the mean atmo-

spheric temperature and the atmospheric transmittance as an input on radiative transfer codes (i.e.,

MODTRAN). Figure 3 shows the flowchart to retrieve LST from satellite observations, as proposed by

Cristóbal et al. (2018):

Figure 3 –Workflow to retrieve Land Surface Temperature from Landsat-8 thermal observations with
a single-channel approach.

The single-channel algorithm is the most suitable method when no in-situ radiosonde data is avail-

able, or access to radiative transfer codes is difficult. The approach of the algorithm consists in approxi-

mating the atmospheric functions from atmospheric water vapor content (w, in g cm−2). Cristóbal et al.

(2018) presented an improved single-channel method dependent not only on water vapor content, but

also on near-surface air temperature (Ta), which are available from reanalysis data. Both the single-

channel method (SC method – Jiménez-Muñoz and Sobrino, 2003) and the improved single-channel

method (iSC method – Cristóbal et al. (2018)) have been implemented here, in order to determine

which one is more accurate in the study area. LST is calculated by applying the radiative transfer

equation to a sensor channel:

LST = γ ·
[
ε−1 (ψ1 · Lsensor,λ + ψ2) + ψ3

]
+ δ (17)
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where

γ =

{
c2 · Lsensor,λ
T 2
sensor

[
λ4

c1
Lsensor,λ + λ−1

]}−1
(18)

δ = −γ · Lsensor,λ + Tsensor (19)

Tsensor =
K2

ln
(
K1
Lλ

+ 1
) (20)

where ε is the emissivity of the pixel, ψi are the atmospheric functions that are parameterized, λ is the

effective wavelength (10.904µm for Band 10), Lsensor,λ is the top of atmosphere radiance calculated

from pixel Digital Numbers (DN) using rescaling factors (Web 4, last access: 19 June 2020), and Tsensor

is the brightness temperature (in K). Values and symbols can be found in Table 2.

Symbol Unity Value

c1 W µm4 m−2 sr−1 1.19104 · 108

c2 µm K 1.43877 · 104

K1 W m−2 sr−1 µm−1 774.89

K2 K 1321.08

Table 2 – Definitions of symbols involved on LST retrieval.

The atmospheric functions are statistically fitted from the GAPRI database (Mattar et al., 2015):

4714 atmospheric profiles covering from tropical to arctic atmospheric conditions. The following fit is

applied here:

ψi = i w2 + h T 2
a + g w + f Ta + e T 2

a w + d Ta w + c Ta w
2 + b T 2

a w
2 + a (21)

All the coefficient values (from i to a) can be found in Cristóbal et al. (2018). Here the emissivity is

considered equal to 1 on the whole scene is made, so as to be consistent with Eq. 2. Water vapor and

near-surface air temperature data comes from ERA5 Reanalysis dataset (C3S, 2017). They are taken

from the closest grid reanalysis point to the scene. In order to cover a large range of solar zenith angles,

a total of 20 cloudless thermal images from different winter dates were selected, from February 2015

to December 2019. Unfortunately, during the two winter seasons that are covered by the work of Tuzet

et al. (2020), only 4 of the Landsat-8 acquisitions correspond to their in-situ SSA measurements, in

particular: 2, 18 and 27 February 2018, and 22 March 2018. The list of selected scenes can be found

in the appendix.
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2.5 Thermal infrared camera

Thermal infrared (TIR) imagery is an increasingly popular tool to measure surface temperature. TIR

cameras measure radiation in the 8-14µm domain and their size and light-weight allow them to be

carried by unmanned aerial vehicles (UAVs), which can provide high resolution and spatially-resolved

surface temperature data. This technique combines the advantages of in-situ measurements (possible

high temporal resolution) and those of remote sensing techniques. These UAV-borne cameras imply

a huge improvement in spatial resolution over typical satellite thermal measurements (centimeter vs

100m from the Landsat-8 TIRS). Glaciologists have widely exploited the visible and near-infrared do-

mains to track rapid changes or dynamics of glaciers (Rossini et al., 2018), with photogrammetry tech-

niques such as structure-from-motion (SfM) to create orthophotos and Digital Surface Models. Such

devices have also been used to map snow depth over different types of terrain. Bühler et al. (2016)

showed the potential and limitations of suchmeasurements, which are a crucial input for applications in

hydrology, climatology or avalanche research. Until now, UAV-based thermal infrared imagery has been

widely exploited for agricultural applications, such as monitoring crop water stress (Gomez-Candon et

al., 2016) or evapotranspiration mapping (Brenner et al., 2017). TIR imagery has not been used as

much for cryospheric applications. It has been mainly applied to derive surface temperature on debris-

covered glaciers (Aubry-Wake et al., 2015; Kraaijenbrink et al., 2018), in order to better evaluate the

glacier’s surface energy budget.

All these previous works show the potential of TIR cameras to derive surface temperature. Neverthe-

less, accurate results are rarely obtained. This can be explained by the fact that these platforms need

to mount light and uncooled thermal cameras. Their microbolometer is not stabilized at a constant

temperature, so the fluctuations of the sensor and the camera body temperature impact the measure.

Correction and calibration need to be done, such as proposed by Budzier and Gerlach (2015): (i)

Non-uniformity correction, which smooths out the differences between individual pixels of the mi-

crobolometer; (ii) shutter correction, required due to the radiance emitted by the camera itself, that

also varies with temperature. This correction, known as Flat Field Correction (FFC), is implemented

by the manufacturer in the firmware based on time or changes in sensor temperature; (iii) radiometric

calibration, by establishing the relationship between the response of the sensor and the absolute tem-

perature of the image.

During this study, we planned to acquire both UAV-based and ground-based (time series via time-

lapse photography) thermal images to validate the estimation of snow surface temperature, Ts. Before

performing UAV-based measurements, calibration tests were undertaken in order to evaluate the pre-

cision and accuracy on snow of the camera, a Tau 2 640, from FLIR Systems. The sensor resolution is
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of 640 x 512 pixels, and the camera is mounted with a 13mm lens that offers a 45° x 37° field of view.

The detector of the infrared radiation is an uncooled microbolometer, working in the spectral range of

7.5 - 13.5µm. The acquisition rate is 8.33Hz, and the image recording can be modified to the required

time-lapse frequency. One calibration test was done on 7 March 2020 at the Col du Lautaret alpine site,

during a clear-sky morning and under stable conditions. A snow surface was prepared and the camera

was fixed for nearly 90min to acquire a time series (2min time-lapse frequency). The validation was

performed at the same time with two Infrared Remote temperature sensors (IR120) from Campbell

Scientific, that were pointed to two different areas within the TIR camera field of view. The uncertainty

related to the temperature measurement is about 0.2 K under laboratory conditions, according to the

manufacturer (Web 5, last access: 19 June 2020).

Unfortunately, the lockdown because of the COVID-19 pandemic has impeded further measurement

campaigns, in particular UAV-based ones, which would have been worthwhile to this study.

3 Results

In order to validate the Ts estimation, the spatially-resolved observations are evaluated. First, TIR

imagery and observations from Landsat-8 satellite are assessed, before the evaluation and validation

of the model against the observations.

3.1 Thermal camera measurements

Figure 4 –On the left, photograph from the set up to calibrate the thermal (TIR) camera. On the right,
non-calibrated image from the TIR camera. Both rectangles represent the zones where calibration is
based on.

The calibration experiment was performed in presence of snow. Figure 4 shows, on the left, a pho-

tograph of the set up, with the TIR camera in the middle and the two surface temperature sensors

(IR120) pointing to the outermost parts of the surface. It was prepared to be at a quasi-uniform tem-
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perature (small area, uniform slope and orientation), so calibration could be easily performed. On the

right, a non-calibrated image acquired with the camera shows the high variability of surface temper-

ature measurements. A vignetting effect is visible close to the lower right corner. This is observed in

the majority of the images taken by the TIR camera, as well as large temperature changes between

consecutive acquisitions (10 to 15 °C variations).

To evaluate the fluctuations on the measurements, Figure 5 shows the temporal evolution of the

temperature difference: (i) between the two surface temperature sensors (IR120 radiometers) and

the TIR camera (FLIR), left and right (blue and red lines, respectively) zones corresponding to the

rectangles in Figure 4; and (ii) between the inner parts of the TIR camera (green line).

Figure 5 – Temperature differences between the IR120 radiometers and the thermal camera (red and
blue lines) and between the inner parts of the thermal camera (green line).

The thermal camera measurements are in the range 5 to 15 °C off the reference temperature mea-

sured by the IR120 radiometers, and this seems to be correlated to the temperature difference between

the inside parts. Other tests under varying conditions (ventilation, in particular) indicate the same cor-

relation. This highlights the importance of a better understanding on how the camera calibrates itself

to compensate these inner temperature changes. Unfortunately, lockdown because of COVID-19 pan-

demic prevented us to further explore this issue, essential for UAV-borne measurements.

3.2 Surface temperature observations with Landsat-8

The surface temperature observations from Landsat-8 (LST) are compared to FluxAlp measurements in

order to evaluate the accuracy. The atmospheric correction is carried out by means of both the single-

channel method (SC method) and the improved single-channel method (iSC method), to determine

which one is more robust in the Col du Lautaret site. Figure 6 shows the surface temperature obtained

by the retrieval methods as a function of the in-situ measurements. Values from Landsat-8 acquisi-

tions are taken from the pixel covering the location of FluxAlp. The bias of the iSC method is smaller
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Figure 6 – Surface temperature estimated with Landsat-8 observations as a function of surface tem-
perature measurements at FluxAlp site. Blue markers represent the improved iSC retrieval method
while red markers represent the SC method. The 1:1 dashed line represents perfect agreement with
observations.

than the one of the SC method (-1.9 °C and -2.6 °C, respectively). The bias is generally more impor-

tant when considering cold conditions, between -10 °C and -15 °C, being the improved method (iSC)

constantly warmer than the original method (SC). Without considering the two acquisitions where

the underestimation is larger (around 5 °C on 2 February 2018 and on 29 January 2019), the bias is -

1.6 °C (RMSE: 1.9 °C). Here, as an approximation, acquisition time of Landsat-8 observations (10h17 or

10h23 UTC depending on the scene) and measurements (10h30 UTC) are considered equal, as FluxAlp

measurements are averaged over 30min. The lack of real-time measurements can hide a bias on the Ts

measurements, so this needs to be considered when assessing the accuracy of the method, as well as

the own estimated accuracy at FluxAlp, around 1 °C. The improved single-channel method shows more

accurate results, and it has been used here to evaluate the estimation of snow surface temperature.

3.3 Snow surface temperature estimation

3.3.1 Evaluation of the diurnal cycle dynamics

The modelling chain to estimate Ts variations is first evaluated over a diurnal cycle, before assessing

its performance on spatial variability. A 30 h long time series was selected close to one of the Landsat-8

acquisition dates, starting at noon on 10 March 2016. This period featured stable conditions and the

sky was clear, except few minutes at the end of the time series. The terms of the surface energy budget

are simulated and compared to the in-situ measurements at FluxAlp site. Figure 7 (top) shows the tem-

poral evolution of the radiative fluxes (SWnet and LWnet) and the turbulent fluxes (sensible heat fluxH
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Figure 7 – Simulation of a 30 h long time series onMarch 2016. The terms of the surface energy budget
(top) and snow surface temperature (bottom) are estimated at the FluxAlp measurement station to be
compared to in-situ observations. The shadowed areas correspond to night time (i.e. SWnet =0Wm−2).
All times are in UTC.

and latent heat flux L). The simulations are run on an hourly basis, with constant SSA = 20m2 kg−1

and aerodynamic roughness length z0 = 10−3m. As measurements at FluxAlp station are averaged
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over 30 minutes, a 15min time shift is applied for a fair comparison. The results show that, while the

net longwave flux is well estimated, the net shortwave flux is less accurate. This flux is overestimated

during the first hours of sunlight, and underestimated during the rest of the day. This absorption bias

is not significant around 10h-10h30 UTC, corresponding to the Landsat-8 acquisition time. The tur-

bulent fluxes are well simulated compared to the values estimated from the observed wind speed, air

temperature and humidity (from that the notation: 1D simulated). They use the same equations (Eq.

3 and Eq. 4) as for the simulated terms. Figure 7 (bottom) shows the evolution of the simulated Ts

over the same period, compared to measurements. Two simulations are shown, with SSA values of 20

and 25m2 kg−1, respectively. Observed air temperature (Tair) is also shown for completeness. There

is an excellent agreement between the simulations and the measurements. The overestimation and

underestimation of the net shortwave flux (and therefore the energy absorbed in the snowpack) could

explain the bias of snow surface temperature in the morning and at the end of the afternoon.

In addition, Figure 8 shows observations by Landsat-8 and simulations by the model of snow surface

temperature, compared to the in-situ observations. The bias of the model is only -0.2 °C (RMSE: 1.2 °C),

much less than the satellite observations bias. The estimation of Ts at a particular point is accomplished

for a large variety of illumination conditions (i.e. different solar zenith and azimuth angles).

Figure 8 – Comparison of simulated Ts by the model and observed Ts by Landsat-8 to in-situ measure-
ments at FluxAlp site. All 20 Landsat-8 scenes are considered.

3.3.2 Evaluation of the spatial variations

To evaluate the spatial variations of Ts, the results here correspond to two of the Landsat-8 acquisition

dates: 18 and 27 February 2018, respectively. These are chosen as SSA in-situ measurements are
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available from Tuzet et al. (2020). The corresponding values are 45 and 53m2 kg−1. The other results

are shown in the appendix for completeness.

Figure 9 – Surface temperature maps, observed by Landsat-8 and estimated by the RSRT model, for
two dates: 18 February 2018 (left) and 27 February 2018 (right). The location in the scene of the
FluxAlp measurement station is highlighted by the green marker. Projection is Lambert 93 (EPSG:
2154) and the coordinates are in meters.

Figure 9 shows the spatial variations of the snow surface temperature, observed by Landsat-8 (top)

and simulated by the modelling chain (bottom). The zone without data (white) in simulated images

corresponds to the part of the mesh that is not illuminated to avoid edge effects. The variations are

well represented by the model, with many similarities at all the scales across the images. The surface

temperature is clearly dependent on topography, and in particular on slope orientation, showing large

temperature gradients. Figure 10 shows the distribution of simulated Ts with respect to the aspect

of the terrain. The gradient is large between opposite slopes, with lower surface temperatures in the

shadowed, north-east facing areas at the south of the scene and warmer temperatures in the south-west

facing areas around FluxAlp.

To highlight the effect of considering altitudinal variations of air temperature, Figure 11 displays

the distribution of surface temperature for both dates, observed by Landsat-8 and simulated by the

model (with and without the lapse rate). Introducing the lapse rate effect decreases the surface tem-

perature, as the reference site (FluxAlp) is rather in the lower range of altitudes of the study area. This

improves the agreement with the observations by satellite, in particular the case in Figure 11a, where

the distribution shape is considerably widened. Figure 12 shows the scatterplots between observations

and simulations on 18 February 2018 and 27 February 2018. The particular processes that take place
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Figure 10 – Distribution of simulated surface temperature as a function of the aspect. The results are
normed and displayed in percent.

Figure 11 – Distribution of surface temperature from observations and simulations (with or without
lapse rate effect for air temperature). The value corresponding to FluxAlp is highlighted with an intense
blue rectangle. (a) corresponds to Landsat-8 acquisition from 18 February 2018, and (b) from 27
February 2018.

in rugged terrain are considered: without re-illumination by surrounding slopes (left); accounting for

re-illumination (center); and introduction of a lapse rate in air temperature (right). In any cases, the

local slope and the shadow are taken into account. The agreement with observations increases as these

processes are considered (R2 changes from 0.57 to 0.75 and from 0.61 to 0.71, for the two dates).

4 Discussion

Two main questions are discussed. The estimation of Ts and the spatial variations is first assessed

(Section 4.1), and secondly, the limitations of the methods are discussed in Section 4.2.
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Figure 12 – Comparisons of simulated Ts by the model and observed Ts by Landsat-8. No re-
illumination considered (left), re-illumination considered (center) and lapse rate in air temperature
also considered (right). Simulations corresponding to 18 February 2018 (top) and 27 February 2018
(bottom).

4.1 Snow surface temperature estimation

The first question that arises is about the performance of the model to estimate the Ts and the spatial

variations. The simulations show an overall agreement with observations, as seen in Section 3.3. First,

the simulated fluxes to be considered on the surface energy budget and the temporal evolution of Ts are

very well represented for a daily cycle (Section 3.3.1). The choice of SSA and z0 values when in-situ

measurements are not available is critical. Spatio-temporal variations of SSA play a crucial role on the

absorption by the snowpack, which could explain the differences between the simulated and observed

net shortwave flux (Figure 7 (top)), as here the value has been kept constant for the whole time series.

The roughness length controls the sensible and latent heat fluxes, so it shall also be carefully selected.

Here, a standard value of 10−3m is assumed, based on previous works (i.e. Brock et al., 2006) and

a few tests with other values. The results show a much smaller bias to the in-situ measurements than

the one from the satellite observations (Figure 8). Considering the high accuracy of surface tempera-

ture measurements at FluxAlp, this highlights the performance of the modelling chain to estimate Ts

at this particular point. Re-illumination here is estimated to be around 10 to 20%, but the location of

the instrumented site is relatively homogeneous and flat, so not particularly representative of complex

terrain.

The spatial variations are also well represented, in particular when accounting for all topography
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effects. The small-scale variations in the cold areas seem to be underestimated because of the domi-

nating role of the shadow (Figure 9). The lack of direct radiation governs the surface temperature in

some areas, such as the eastern (N-E to S-E) slopes covered by the shadow at the south of the scene,

as shown in Figure 10. Opposed slopes show variations of surface temperature on the order of 5 to

10 °C in a few hundreds of meters. The re-illumination of the latter from surrounding terrain reduces

these gradients in areas where diffuse illumination is important. The key role played by the processes

involved in complex terrain is shown in Figure 11 and Figure 12. Accounting for the re-illumination

warms the simulations, in particular the coldest facets that do not receive direct radiation. On the other

hand, considering the lapse rate effect in air temperature cools the high-altitude areas of the modelled

surface, since the air temperature was taken at the FluxAlp site. The result of combining both pro-

cesses lead to an increased agreement of the simulations with the satellite observations. R2 increases

from 0.57 to 0.75 and from 0.61 to 0.71, for the scenes considered (18 and 27 February 2018). These

results show the necessity of considering topography to well simulate the spatial variations of surface

temperature. A further implementation by considering the spatial variations of wind speed and hu-

midity would certainly improve the estimation of surface temperature. The results are similar on the

other two dates where in-situ SSA measurements are available alongside Landsat-8 acquisitions. The

R2 coefficient is equal to: 0.67, and 0.69 (on 2 February 2018 and 22 March 2018), with SSA values

of 47 and 32m2 kg−1.

4.2 Limitations and further work

The methods implemented here to estimate surface temperature show some limitations. First, the

measurements with the thermal camera are not entirely satisfactory. Being able to compensate for

the internal temperature changes caused by external factors (heating, ventilation, etc) would lead

to more accurate measurements and would certainly avoid the observed large fluctuations. This is

normally performed by a shutter operation – closing and opening of the sensor. Also, this solution

should reduce the vignetting effect seen on images, which turns out to be a known issue when UAV

images are stitched together while creating an ortophoto (Goldman, 2010). Once this step is achieved,

a second step involving an external shutter whose temperature is known should improve both accuracy

and precision of the measurements. Without taking this into account, TIR cameras can only be used

to measure surface temperature when alongside a validation instrument, such as infrared radiometers,

that can serve as reference values to perform external calibration. This is realistic for a ground-based

experiment, but is not for application on an UAV-based measurement protocol, as it can be difficult to

perform such calibrations in an alpine terrain.

Considering satellite observations, the choice of the method for atmosphere correction is essential.

The upcoming calibrated data from Landsat-8 that will be released by USGS in 2020 (Web 3, last access:

19 June 2020) will make it possible to consider again split-window algorithms as the stray light issue on
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Band 11 will be a priori resolved. In this study, the whole scene has been considered as snow-covered,

with an emissivity assumed to be equal to 1 and an albedo spectrum adapted to snow. However in

alpine areas as the studied one, mountain ridges or even lack of snow on sun-facing slopes will require

an emissivity mask, where each pixel would have a particular value. This is normally achieved by means

of NDVI-based classifications (Li et al., 2013), but in mountainous areas in winter a simple snow mask

would be enough to better determine albedo and emissivity over the whole scene. Nevertheless, recent

works (i.e. He et al., 2019) show the complexity of retrieving surface temperature in mountainous

areas, the extreme heterogeneity of the terrain being the main cause.

Accounting for the modelling chain, SSA and z0 values should be carefully chosen. For the sake

of simplicity, these values have been kept constant when no in-situ measurements were available

(20m2 kg−1 and 10−3m, respectively). An alternative method would be to derive SSA from satel-

lite observations, as in Kokhanovsky et al. (2019). The turbulent heat fluxes depend on wind speed

as well as on roughness length z0. In complex terrain, the wind dynamics are influenced by the local

topography, and when the geostrophic wind is weak, the so-called thermally driven winds develop as a

consequence of the radiative cooling (warming) of the surface. They are down-slope – katabatic (up-

slope – anabatic) during the night (day). The spatial variations of wind speed can be large in complex

terrain, and therefore impact the surface temperature.

Another limitation is the single validation point available within the study area, which limits this

evaluation. Ideally, at least three validation points would permit to better evaluate the model, in par-

ticular if they are located on different locations covering representative areas of the scene, such as

shadowed areas at different altitude or with a different slope aspect. Figure 9 shows the large temper-

ature contrasts between opposed slopes.

5 Conclusion

The RSRT model and the whole modelling chain has been evaluated against in-situ measurements

and remote sensing observations to estimate the snow surface temperature in rugged terrain. The key

radiative processes that take place in mountainous areas have been assessed and their role has been

evaluated. A first method of validation relies on UAV-based thermal camera measurements. Further

work is needed to better understand the uncertainties and to manage the constraints related to thermal

imagery measurements. A single-channel algorithm for atmospheric correction has been implemented

here in order to use Landsat-8 thermal acquisitions as validation for the spatial distribution of Ts. A

total of 20 winter, cloudless images, acquired between February 2015 and December 2019 have been

selected. Using one validation point (FluxAlp measurement station, in the French Alps), a cold bias of

nearly 2 °C is observed, which is considered acceptable with respect to the assumptions made. This is

coherent with difficulties noted by other authors, such as He et al. (2019).
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The model has been evaluated both on its performance simulating temporal evolution and spatial

variations of Ts. A 30 h long time series was simulated to assess the fluxes of the surface energy budget,

in addition to the surface temperature. An overall agreement is obtainedwith the in-situmeasurements.

Besides, the bias observed at FluxAlp for the 20 scenes corresponding to Landsat-8 acquisitions is of only

-0.2 °C, which highlights its potential to estimate surface temperature nearby well-instrumented areas.

Spatial variations are also well represented, showing differences up to 5 to 10 °C in a few hundreds of

meters. This is influenced by the aspect of the tilted terrain. Accounting for topography effects, such as

re-illumination or lapse rate, ameliorates significantly the simulations. Alongside in-situ measurements

of SSA, the determination coefficient with respect to Landsat-8 images varies from R2 = 0.67 to R2 =

0.75. The model shows some limitations when SSA and z0 values are not available, so they should be

carefully determined to estimate surface temperature.

The model shows performance to estimate the snow surface temperature and the spatial variations.

It could be helpful to assess the requirements of future satellite missions as Trishna. This Franco-Indian

programmewill be focused in the thermal part of the spectrum, and the derived cryospheric applications

could benefit from the understanding of the processes that govern the surface energy budget in snow-

covered, mountainous areas.
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Appendix A List of selected Landsat-8 scenes

Date Path / Row Product name

10 February 2015 196 / 029 LC08_L1TP_196029_20150210_20170413_01_T1

19 February 2015 195 / 029 LC08_L1TP_195029_20150219_20170412_01_T1

26 February 2015 196 / 029 LC08_L1TP_196029_20150226_20170412_01_T1

21 January 2016 195 / 029 LC08_L1TP_195029_20160121_20170405_01_T1

9 March 2016 195 / 029 LC08_L1TP_195029_20160309_20170328_01_T1

13 December 2016 196 / 029 LC08_L1TP_196029_20161213_20170316_01_T1

1 January 2018 196 / 029 LC08_L1TP_196029_20180101_20180104_01_T1

2 February 2018 196 / 029 LC08_L1TP_196029_20180202_20180220_01_T1

18 February 2018 196 / 029 LC08_L1TP_196029_20180218_20180307_01_T1

27 February 2018 195 / 029 LC08_L1TP_195029_20180227_20180308_01_T1

22 March 2018 196 / 029 LC08_L1TP_196029_20180322_20180403_01_T1

4 January 2019 196 / 029 LC08_L1TP_196029_20190104_20190130_01_T1

29 January 2019 195 / 029 LC08_L1TP_195029_20190129_20190206_01_T1

5 February 2019 196 / 029 LC08_L1TP_196029_20190205_20190221_01_T1

14 February 2019 195 / 029 LC08_L1TP_195029_20190214_20190222_01_T1

21 February 2019 196 / 029 LC08_L1TP_196029_20190221_20190308_01_T1

18 March 2019 195 / 029 LC08_L1TP_195029_20190318_20190325_01_T1

25 March 2019 196 / 029 LC08_L1TP_196029_20190325_20190403_01_T1

6 December 2019 196 / 029 LC08_L1TP_196029_20191206_20191217_01_T1

31 December 2019 195 / 029 LC08_L1TP_195029_20191231_20200111_01_T1

Table 3 – List of selected scenes
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Appendix B Scatterplots of all estimations

32


	Introduction
	Methods and materials
	Surface energy budget
	Modelling chain
	SBDART model
	Asymptotic Radiative Transfer theory
	Rough Surface Ray Tracer model
	Snow surface temperature estimation

	Study area
	Surface temperature retrieval with Landsat-8 observations
	Thermal infrared camera

	Results
	Thermal camera measurements
	Surface temperature observations with Landsat-8
	Snow surface temperature estimation
	Evaluation of the diurnal cycle dynamics
	Evaluation of the spatial variations


	Discussion
	Snow surface temperature estimation
	Limitations and further work

	Conclusion
	References
	Appendix List of selected Landsat-8 scenes
	Appendix Scatterplots of all estimations

